

DOI: 10.22144/ctu.jen.2017.038

Chemical examination on the ethyl acetate extract of the bark of *Oroxylum indicum* (L.) Vent

Ton Nu Lien Huong, Lam Trieu Minh, Vo Nguyen Giang Tien College of Natural Sciences, Can Tho University, Vietnam

Article info.	ABSTRACT	
Received 13 Jun 2016 Revised 09 Oct 2016 Accepted 29 Jul 2017	This paper presents the results of the study about the bark of Oroxylum indicum (L.) Vent, collected in An Giang province, Vietnam. Three compounds consisting of oroxylin A 7-O- β -D-glucopyranoside (1), baicalein 7-O- β -D-glucopyranoside (2) and verbascoside (3) were isolated from the ethyl acetate extract. The structures of these compounds have been elucidated by modern spectroscopic methods: NMR and MS.	
Keywords		
Baicalein 7-O-β-D- glucopyranoside, Oroxylin A 7-O-β-D-glucopyranoside,		

Cited as: Huong, T.N.L., Minh, L.T., Tien, V.N.G., 2017. Chemical examination on the ethyl acetate extract of the bark of *Oroxylum indicum* (L.) Vent. Can Tho University Journal of Science. Vol 6: 148-152.

1 INTRODUCTION

Verbascoside

Oroxylum indicum (L.) Vent.,

Oroxylum indicum (L.) Vent belongs to the family Bignoniaceae, locally known as "Núc nác", is widely found in tropical regions. It is also named such as Tatelo, Karamkanda, Saune tatal (Nepali); Ka-pa, Sonapatha (India). O. indicum is an important traditional herbal medicine of some regions such as Vietnam, Japan, Thailand, India and China. In the Indian Ayurvedic system, it is used as Rasayana drug for treatment of various disorders as well as used as a tonic (Dev et al., 2010). In Vietnamese traditional medicine, its bark, called "Nam hoàng bá", has been used in treating skin diseases. allergic diseases and hepatitis (Đỗ Tất Lợi, 2004). There were also many reports in mainstream scientific journals describing the nutritional, medicinal properties and the chemical constituents of different parts of this plant (Lalou et al., 2013; Singh et al., 2013), which illustrated its medicinal value.

This is our third report about phytochemical examination of "Núc nác" from An Giang, (Nguyen Dang Khoa *et al.*, 2015; Tôn Nữ Liên Hương and Lê Minh Thịnh, 2016). This paper focused on verbascoside, a phenylethanoid glycoside compound which was first isolated from *O. indicum* together with two other glycosides as oroxylin A 7-*O*- β -D-glucopyranoside and baicalein 7-*O*- β -D-glucopyranoside.

2 MATERIALS AND METHOD

2.1 Plant material

The bark of *O. indicum* was collected from Thoai Son district, An Giang provine in December 2014. The plant was identified by Department of Biology, College of Natural science, Can Tho University. The specimen was stored in Laboratory of Organic Chemistry with the number 2014-02. The material was dried in shade, ground to fine powder and stored for further study.

2.2 General experimental procedure

Silica gel 60 (0.063-0.200 mm, Merck) was used for column chromatography. TLC F_{254} plate

(Merck) was used for thin layer chromatography. The NMR spectra were measured on a Bruker Avance 500 (500 MHz for ¹H-NMR and 125 MHz for ¹³C-NMR, HSQC, HMBC), ESI-MS was recorded with a VG 7070 Mass spectrometer operating at 70 eV. All spectra were recorded at Institute of Chemistry, Vietnam Academy of Science and Technology, Hanoi.

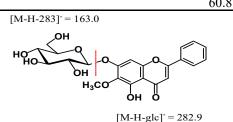
2.3 Extraction and isolation

Dried powder of the stem bark (2 kg) was exhaustively extracted with ethanol (EtOH). The filtrated solution was concentrated *in vacuum* to obtain EtOH extract (308.48 g). Then, this extract was suspended in distilled water and partitioned with petroleum ether (PE), dichloromethane (DC), ethyl acetate (EA), and *n*-butanol (Bu), respectively. The partitioned solutions were removed solvent to give five extracts: PE (14.00 g), DC (8.95 g), EA (14.43 g), *n*-BuOH (14.53 g) and Me/H₂O (53.30 g).

The EA extract was subjected to silica gel column, eluted with EA:Me (100% EA to the mixture in the

ratio of 8:2). Fractions with the similar characteristic on TLC were combined to afford 7 fractions (P1-P7), in which the fraction P3 (7.08 g) was continued chromatographed, eluted by the mixture DC:Me (in the ratio of 99:1 to 7:3) to afford 6 subfractions. After recrystallization (DC 100%) on the subfraction P3.5 (0.18 g), compound 1 (15 mg) was achieved. The subfraction P3.7 (1.01 g) was further purified by column chromatography to obtain compound 2 (18 mg) and 3 (50 mg).

Compound 1, amorphous crystal, ESI-MS (negative): m/z 445.0 [M - H]⁻, 326.9; 282.9 [M-H-glc]⁻. The NMR spectra data of 1 were compared with those of 2 and showed in the Table 1 (500 MHz, DMSO- d_6). The correlative signals among the protons and carbon signals at $\delta_{\rm H}$ 3.71 and $\delta_{\rm C}$ 133.1; $\delta_{\rm H}$ 5.13 and 157.2 ppm; $\delta_{\rm H}$ 7.07 with $\delta_{\rm C}$ 106.5 and 152.9 were showed on HMBC spectra.


Compound 2, yellow crystal, ESI-MS (negative): m/z 431.0 [M - H]⁻, 288.9.

No	δ _H , J (Hz)	$\delta^{\#}_{H}$, J (Hz)	δc	δ [#] c
2			164.2	163.4
3	7.05(s)	7.00 (1H; <i>s</i>)	105.4	104.7
4			182.9	182.5
5			152.8	146.5
6				130.8
7				156.1
8	7.07(s)	7.06 (s)	94.9	94.2
9			152.9	149.2
10			106.5	106.1
1'			131.1	130.6
2', 6'	8.09 (d; J = 7.5)	8.07 (dd; J = 1.5; J = 8.0)	126.9	126.3
3', 5'	7.58 – 7.64 (<i>m</i>)	7.57 – 7.76 (<i>m</i>)	129.7	129.1
4'	7.38 - 7.04 (m)	7.57 - 7.70 (m)	132.7	132.0
1"	5.13 (d; J = 7.0)	5.02 (d; J = 7.0)	100.6	100.9
2"			73.6	73.1
3"			77.8	77.3
4"	3.17 - 3.75	3.17 - 3.77	70.0	69.6
5"			77.2	75.8
6"			61.1	61.2
5-OH	12.56 (s)	12.56 (s)		
6-OH	-	8.59 (s)		
6-OCH ₃	3.78 (s)			60.8

Compound 3, an amorphous powder, the NMR data were showed on the Table 2.

3 RESULTS AND DISCUSSION

Compound 1: The ESI-MS (negative) of 1 showed a pseudo ion peak at m/z 445.0 [M-H] and 282.9 [M-H-glc]; correspondingly to the molecular formula $C_{22}H_{22}O_{10}$ (M = 446 amu).

The presence of a β -configuration glucose moiety was confirmed via the anomeric proton signal at $\delta_{\rm H}$ 5.13 (1H, *d*, *J*=7.0; H-1") and the other protons. The correlative signal between anomeric proton at $\delta_{\rm H}$ 5.13 and $\delta_{\rm C}$ 157.2 (C-7 of aglycon), $\delta_{\rm H}$ 3.78 and $\delta_{\rm C}$ 133.1(C-6) illustrated that the moiety was located at C-7, and the methoxylated of aglycon was posited at C-6. Thus, the structure of 1 was identified as oroxylin A 7-*O*- β -D-glucopyranoside. These data spectra were suitable with the authentic data of oroxylin A (Mouffok *et al.*, 2012) and the data of β -glucoside (Andersen and Markham, 2006).

Compound 2 was obtained as yellow needles. The ¹H NMR spectrum indicated the presence of a hydrogen-bonded hydroxyl group at $\delta_{\rm H}$ 12.56 (HO-5). Two single signals at $\delta_{\rm H}$ 7.00 and 7.06 were referred to H-3 and H-8, respectively. The ring B of flavone was assigned to 1-substitued benzene by the signal of five other protons at $\delta_{\rm H}$ 8.07 (2H, *dd*, *J* = 1.5, 8.0; H-2', H-6') and $\delta_{\rm H}$ 7.57-7.62 (3H, *m*; H-3', H-4', H-5'). In comparison with 1D-NMR data

of 1, by the lack of proton signal at δ_H 3.78 (3H; *s*) and carbon signal at δ_C 60.8 (-OCH₃), the aglycon of compound 2 was identified as baicalein.

The presence of a β -configuration glucose moiety was confirmed via the anomeric proton signal at $\delta_{\rm H}$ 5.02 (1H, d, J=7.0; H-1") and the other protons. The ¹³C and DEPT NMR spectra displayed the signals of an anomeric carbon $\delta_{\rm C}$ 100.9 (C-1"), a hydroxymethylene $\delta_{\rm C}$ 60.6 (C-6"), four hydroxymethine $\delta_{\rm C}$ 69.6-77.3, a carbonyl group $\delta_{\rm C}$ 182.5 (C-4); besides seven quaternary carbons at $\delta_{\rm C}$ 163.4, 151.6, 149.2, 146.5, 130.8, 106.1 and 130.6 (C-2, C-9, C-7, C-6, C-5, C-10 and C-1') and seven other aromatic carbon signals. All data suggested the presence of a flavone skeleton connected with a pyranosyl moiety. In the HMBC, the correlative signal between the anomeric proton and the carbon at δ_C 151.6 (C-7) confirmed the connection of the glucose moiety at C-7 of the flavone. Therefore, compound 2 was identified as baicalein 7-O-B-Dglucopyranoside, in comparison with published data (Chen et al., 2003).

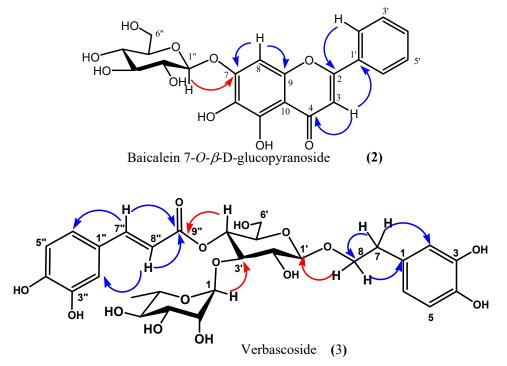


Fig. 2: The HMBC correlations of baicalein 7-O-glucoside (2) and verbascoside (3)

Compound 3 was obtained as an amorphous powder. ¹H-NMR spectrum showed the presence of six anomeric proton signals including two *meta*- spin signals at $\delta_{\rm H}$ 6.72 (1H, d, J = 2.0); 7.07 (1H, d, J =2.0), two *ortho*- spin signals at $\delta_{\rm H}$ 6.70 (1H, d, J =8.0); 6.80 (1H, d, J = 8.0) and two proton signals at $\delta_{\rm H}$ 6.59 (1H, $dd, J_1 = 2.0; J_2 = 8.0$); 6.98 (1H, $dd, J_1 =$ 2.0; $J_2 = 8.0$) which created two ABX phenyl systems, herein there is a 3,4-dihydroxyphenylethyl moiety. The presence of two *trans*- olefinic protons at $\delta_{\rm H}$ 7.61 (1H, *d*, *J* = 16.0); 6.29 (1H, *d*, *J* = 16.0) was consistently with a caffeoyl group, and one signal shifted *para*-magnetically at δ 4.95 (1H, *t*, *J* = 9.5) indicating the same acylation site. The presence of α -rhamnose were demonstrated in the signals of an anomeric proton at $\delta_{\rm H}$ 5.21 (1H, *J* = 1.5),

the special proton at $\delta_{\rm H}$ 1.12 (*d*; J = 6.5) and the other protons (Table 2). Moreover, a β -glucose moiety was presented with a *doublet* signal at $\delta_{\rm H}$ 4.40 (1H, J = 8.0) besides the other protons and carbon signals. The ¹³C and DEPT NMR spectra displayed six methines and six quaternary carbon signals with four oxygenated quaternary carbons at $\delta_{\rm C}$ 144.7; 146.1; 149.8; 146.8 ppm which were appropriated to two ABX systems. In addition, characteristic signals arising from two anomeric carbons at $\delta_{\rm C}$ 104.2 and 103.1 ppm and one carbonyl at $\delta_{\rm C}$ 168.6 ppm were consistently with disaccharide structure and caffeoyl moiety.

The HMBC correlation observed between the carbonyl carbon ($\delta_{\rm C}$ 168.6) of the caffeoyl moiety and the H-4' ($\delta_{\rm H}$ 4.95) of the glucose revealed that the caffeoyl group occupied the C-4' position of the glucose moiety. A prominent HMBC coupling from C-3' ($\delta_{\rm C}$ 81.6) of the glucose to the H-1" ($\delta_{\rm H}$ 5.21) of the rhamnose unit indicated the linkage of the rhamnose unit at the C-3' position of the glucose moiety. All these data suggested that the structure of **3** was established as 3,4-dihydroxy phenethyl-O- α -rhamnopyranosyl-4-O-caffeoyl- β -glucopyranoside (other name as verbascoside), in comparison its NMR data with those given in the previous report (Tayfun *et al.*, 2002).

Position		δ _H ppm (<i>J</i> Hz) δ _C ppm		HMBC	
	1	· ·	131.5		
	2	6.72 (d; J = 2.0)	116.5	C-6, C-1, C-3, C-4, C-7	
	3		144.7		
	4		146.1		
Aglycone	5	6.70 (d; J = 8.0)	117.1	C-6, C-1, C-3, C-4	
	6	$6.59 (dd; J_1 = 2.0; J_2 = 8.0)$	121.3	C-7, C-5, C-3	
	7	2.81 (<i>m</i>)	36.6	C-8, C-6, C-2, C-1, C-5	
	8a	4.07 (<i>m</i>)	72.3	C-7, C-1, C-1'	
	8b	3.75 (<i>m</i>)	12.5	C-7, C-1, C-1	
	1"		127.6		
	2"	7.07 (d; J = 2.0)	114.7	C-7", C-6", C-4", C-3"	
	3"		149.8		
	4"		146.8		
Caffeoyl	5"	6.80 (d; J = 8.0)		C-4", C-3", C-1"	
	6"	$6.98 (dd; J_1 = 2.0; J_2 = 8.0)$	123.2	C-7", C-8", C-3"	
	7"	7.61 (d ; $J = 16.0$)	148.0	C-9", C-8", C-6", C-1"	
	8"	6.29 (d; J = 16.0)	115.2	C-9", C-1"	
	9"		168.3		
	1'	4.40 (d; J = 8.0)	104.2	C-8	
	2'	$3.41 (dd; J_1 = 8.0; J_2 = 9.0)$	76.1		
Glucose	3'	3.83(t; J = 9.5)	81.6	C-5', C-4', C-2', C-1'''	
	4'	4.95(t; J = 9.5)	70.4	C-6', C-5', C-3', C-2', C-9"	
	5'	3.55 (<i>m</i>)	76.2		
	6'	$3.62 (dd; J_1 = 12.0; J_2 = 2.0)$	62.4		
		$3.52 (dd; J_1 = 12.0; J_2 = 6.0)$			
Rhamnose	1'''	5.21 (d; J = 1.5)	103.0	C-3', C-4', C-5''', C-3''', C-2'''	
	2""	(3.60-4.00)	72.4		
	3""	(3.60-4.00)	72.1		
	4'''	(3.60-4.00)	73.8		
	5""	(3.60-4.00)	70.6		
	6'''	1.12 (d; J = 6.5)	18.4	C-4''', C-5'''	

Table 2: NMR data of compound 3

4 CONCLUSIONS

The study on chemical constituents of the ethyl acetate extract of the stem bark of *Oroxylum indicum* (L.) resulted in the isolation of oroxylin A 7-O- β -D-glucopyranoside (1), baicalein 7-O- β -D-glucopyranoside (2) and verbascoside (3). Com-

pound (3) was isolated for the first time from the genus *Oroxylum*.

REFERENCES

Andersen, O.M., Markham, K.R., 2006. Flavonoids: Chemistry, biochemistry and applications. CRC Press, pp. 67.

- Chen, L.J., Games D.E., Jones J., 2003. Isolation and identification of four flavonoid constituents from the seeds of Oroxylum indicum by high-speed countercurrent chromatography. Journal of Chromatography A. 988(2): 95-105.
- Lawaria R.D., Mishra A., Gupta R., 2010. Oroxylum indicum A Review. Pharmacognosy Journal. 2(9): 304-310.
- Đỗ Tất Lợi, 2004. The medicinal plants and herbs in Vietnam. Publishing Medicine, Hanoi, p. 197 (in Vietnamese).
- Lalou, C., Basak, A., Mishra, P., Mohanta, B.C., Banik, R., Dinda, B, Khatib, A.M., 2013. Inhibition of tumor cells proliferation and migration by the flavonoid furin inhibitor isolated from Oroxylum indicum. Current Medicinal Chemistry. 20(4): 583-591.
- Mouffok, S., Lavaud, C., Long, C., Haba, H., Benkhaled, M., 2012. Chemical constituents of Centaurea omphalotricha Coss. & Durieu ex Batt. & Trab., Record of Natural Products. 6(3): 292-295.

- Nguyen Dang Khoa, Le Minh Thinh, Nguyen Huu Phong, Ton Nu Lien Huong, 2015. The chemical composition and qualities of total flavonoids of the stem bark of Oroxylum indicum (1.) Vent., Journal of Science, An Giang University, 4(4): 59-78
- Tôn Nữ Liên Hương, Lê Minh Thịnh, 2016. New results about chemical examination and biological test of the bark of Oroxylum indicum (l.) Vent. The Summary Record of International Conference of Research and Development Natural Products, V.5, 10-11/08/2016, Vinh University, Nghe An, ISBN 978-604-913-477-7, 13-20 (in Vietnamese).
- Tayfun E., Şebnem H.Ü., İhsan Ç., Ali A.D., 2002. Iridoid, phenylethanoid and glycosides from Phlomis sieheana. Turk J. Chem. 26: pp. 1-8.
- Singh L., Prasad C., Deka D.C., Gogoi B.J., Srivastava R.B., Kumar V., Kumar, K. 2013. Oroxylum indicum - a medicinal plant of North East India: An overview of its nutritional, remedial and prophylactic properties. Journal of Applied Pharmaceutical Science. 3(Suppl.1): pp. S104-S112.